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Background: Innate immunity affects infectious and inflammatory diseases.
Results:Using RNAi and proteomic data, we identified a novel evolutionarily conserved protein network that modulates innate
immunity.
Conclusion: Studies using mutant C. elegans and mice demonstrate the utility of this network for disease investigation.
Significance: This innate immunity network provides a novel set of targets for future innate immunity disease studies.

The innate immune response plays a critical role in fighting
infection; however, innate immunity also can affect the patho-
genesis of a variety of diseases, including sepsis, asthma, cancer,
and atherosclerosis. To identify novel regulators of innate
immunity, we performed comparative genomics RNA interfer-
ence screens in the nematode Caenorhabditis elegans and
mouse macrophages. These screens have uncovered many can-
didate regulators of the response to lipopolysaccharide (LPS),
several of which interact physically in multiple species to form
an innate immunity protein interaction network. This protein
interaction network contains several proteins in the canonical
LPS-responsive TLR4 pathway aswell asmany novel interacting
proteins. Using RNAi and overexpression studies, we show that
almost every gene in this network can modulate the innate
immune response in mouse cell lines. We validate the impor-
tance of this network in innate immunity regulation in vivo
using available mutants in C. elegans and mice.

The innate immune response plays a critical role in fighting
infection (1) but can also affect the pathogenesis of numerous
diseases with an inflammatory component (2–5). Evidence for
the importance of innate immunity in host defense in humans
comes from the identification of polymorphisms in innate
immunity signaling genes that render those individuals highly
susceptible to infection (6). The innate immune response can
also affect the risk of many diseases with an inflammatory com-
ponent ranging from atherosclerosis to arthritis to cancer to
sepsis (3, 7–10). Thus, it is critical that the innate immune

response be properly modulated, active when needed to fight
infection, and inactive when not needed to prevent other dis-
eases. Thus, genes that transduce innate immune signals have
become targets for the development of therapeutics for numer-
ous indications (11), and polymorphisms in those genes that
affect disease risk could be used to develop diagnostic tests for
personalized medicine (3).
We have performed comparative genomics RNAi screens in

Caenorhabditis elegans and mouse macrophages to identify
novel, conserved regulators of innate immunity (12). The nem-
atodeC. elegans lacks an adaptive immune response, but it does
have an innate immune response that involves production of
antimicrobial genes to fight infection. Most but not all C.
elegans pathogens infect the nematode digestive tract and
induce the increased expression of antimicrobial genes in intes-
tinal epithelial cells (13, 14). Production of these presumed
antimicrobials is controlled by many conserved innate immu-
nity signaling genes (15–23). The pattern of antimicrobial
genes induced by different pathogens is specific to each patho-
gen (15, 18, 23–27), suggesting that C. elegans can distinguish
between pathogens, although themechanisms of how it does so
are still unclear. Macrophages are key phagocytic innate
immune cell that affect many diseases (28). Our hypothesis is
that by identifying orthologous genes that affect innate immu-
nity in multiple species, suggesting evolutionary conservation
of their function, we can expect that these genes will likewise
affect innate immunity and disease in humans.
Using RNAi screens in these simple model systems, we have

identified many candidate regulators of innate immunity (12,
29–31). To sort through these candidates and determine their
possible function, we examined our candidates for potential
protein-protein interactions using a C. elegans protein interac-
tion database (12). This led to the discovery of a network of
proteins that included several of our candidate innate immu-
nity regulators. Here, we expand the analysis of this innate
immunity protein interaction network to include interactions
inmultiple species (C. elegans, Drosophila, and humans). Using
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RNAi, we show that almost every gene in this network modu-
lates the response to lipopolysaccharide (LPS) inmousemacro-
phage cell lines. We then validated the importance of this net-
work in vivo using available mutations in C. elegans and mice.
Thus, this novel innate immunity protein interaction network
should provide a valuable resource for further innate immunity
and inflammatory disease studies.

EXPERIMENTAL PROCEDURES

RNAi in Mouse Macrophage Cell Lines—RNAi was per-
formed largely as described previously (12). In brief, pools of
four siRNA duplexes or individual siRNA duplexes (Dharma-
con)were transfected into either of twomousemacrophage cell
lines (J774A.1 or RAW264.7) using the Amaxa nucleofector
96-well shuttle according to the manufacturer’s instructions.
Negative control siRNAs used were either a pool of four siRNA
duplexes that do not target any mouse gene (Dharmacon non-
targeting pool 1) or a single siRNA duplex not targeting any
gene (Dharmacon nontargeting siRNA 1). Cells were then
plated at either 100,000 cells/well in a 96-well format for
ELISAs or 250,000 cells per well in a 6-well format for qPCR2

studies. 24 h after plating, the cells were exposed to the indi-
cated pathogen-associatedmolecular patterns (PAMPs) for 6 h.
Escherichia coliO111:B4 LPS was from List Biological Labora-
tories; PAM3CSK4 was from Invivogen. The LPS dose of 20
ng/ml was chosen for RNAi experiments as this dose gave an
essentially complete response without overwhelming the sys-
tem. Six-hour exposures were used as this would capture rap-
idly induced cytokines such as TNF� and cytokines induced
later such as IL-6 (32). Following the exposures, cytokine pro-
duction wasmonitored by ELISA (R&D Systems) on cell super-
natants. The cells were then either subjected to viability analy-
sis or were used to generate RNA for qPCR.
Viability of the cells was monitored by staining cells with

fluorescein diacetate andmeasuring resultant fluorescence on a
plate reader as described (33). For qPCR studies, RLT buffer
was added directly to the cells, and RNA was purified using the
RNeasy kit (Qiagen). qPCR was then performed using the
QuantiTect SYBRGreenRT-PCRassay kit (Qiagen) and anABI
7900 Real Time thermocycler. Primer sequences used for qPCR
are listed in supplemental Table 1. Expression levels were nor-
malized using primers for �-actin.
In separate experiments, phagocytosis was monitored using

cells subjected to RNAi as described above. Phagocytosis of
FITC-labeled E. coli particles was measured using the Vybrant
phagocytosis assay kit (Molecular Probes) as described (34).
C. elegans Survival Assays—C. elegans survival assays were

conducted largely as described previously (35). In brief, animals
in the late L4 stage were exposed to either pathogenic Pseu-
domonas aeruginosa strain PA14 (36) or nonpathogenic E. coli
strain OP50 at 25 °C on standard nematode growth medium
(37). The sole exception to this was the temperature-sensitive
repo-1mutant, which was allowed to develop at the permissive
temperature (15 °C) and which was subsequently exposed to
PA14 at the restrictive temperature of 26 °C at the young adult

stage. Life span analysis using E. coliwas performed in the pres-
ence of the sterilizing agent 5-fluoro-2�-deoxyuridine (38). For
the survival assays in the presence of heat-killed E. coli, bacteria
were incubated at 65 °C for 3 h, concentrated 10-fold, and
plated on nematode growth medium plates (37) supplemented
with 50 �g/ml ampicillin. Strains used were wild type N2,
FX05176 klp-12(tm5176) IV, VC767 set-18(gk334) I, FX01968
siah-1(tm1968) IV, VC812 tag-260(ok1339) V, and repo-
1(or430ts) IV. The repo-1 strain was outcrossed four times; the
klp-12 and siah-1 strains were outcrossed twice. The set-18 and
tag-260 strains were not reported to be outcrossed. The pres-
ence of all deletions was verified by PCR on genomic DNA.
Deletion mutations have also been isolated in klp-7/Kif2a and
ant-1.1/Slc25a5; both homozygous mutant strains were
reported to be lethal or arrest during development and were
therefore not tested in pathogen assays. Occupancy of the bac-
terial lawn and pharyngeal pumping rates of repo-1mutant ani-
malsweremonitored 18h after shifting the young adults ontoP.
aeruginosa bacteria.
Generation of Macrophages Overexpressing Macf1—For the

Macf1 overexpression experiments, a plasmid containing the
Macf1 cDNA cloned downstream of the CMV promoter (39)
was co-transfected with plasmids containing NF�B-AP1-luc (a
133-bp derivative of the IL-8 promoter driving firefly luciferase
expression (40)) and SV40-rluc (normalization control from
Promega) into RAW264.7 cells using FuGENE-HD (Roche
Applied Science) according to the manufacturer’s instructions.
24 h after transfection, cells were exposed to LPS for 6 h, and
luciferase activity was measured using the Dual-Luciferase
reporter assay kit (Promega). Firefly luciferase activity was nor-
malized relative to Renilla luciferase activity. As a control, a
plasmid driving expression of chloramphenicol acetyltrans-
ferase (CAT) using the CMV promoter (pCDNA3.1/CAT,
Invitrogen) was transfected in place of Macf1 in some
experiments.
Generation and Phenotyping of Bone Marrow-derived

Macrophages (BMDM) with Decreased Macf1 Expression—
Generation of the Macf1flox/flox mice has been described (41).
Macf1flox/flox mice were crossed with B6.129-LyzsTM1(cre)Ifo/J
mice (JAX) (42). The Lyzs promoter drives cre expression and
thus deletion of Macf1 in the myeloid lineage in this strain.
BMDM lacking Macf1 (Macf1flox/flox, Lyzscre/cre) were com-
pared with control BMDM expressing Macf1 (Macf1�/�,
Lyzscre/cre); both groups of mice were siblings derived from
Macf1flox/�, Lyzscre/cre � Macf1flox/�, Lyzscre/cre matings.
BMDMwere generated as described (34). In brief, femur and

tibia marrow was harvested, filtered, and plated in DMEM
(Invitrogen) supplemented with 10% FBS (Invitrogen), penicil-
lin and streptomycin (Fisher), and 20 ng/ml mouse M-CSF
(R&D Systems). After 6 days, nonadherent stem cells were
washed away, and adherent cells were collected by trypsiniza-
tion for further experiments. Platingwas performed similarly to
the RNAi experiments described above. The extent of bone
marrow stem cells differentiating intomacrophageswas similar
between Macf1flox/flox mice and their wild type siblings (deter-
mined by F4/80 staining, wild type BMDM 76 � 6% F4/80�,
21 � 3 mean fluorescence intensity;Macf1flox/flox BMDM 83 �

2 The abbreviations used are: qPCR, quantitative PCR; PAMP, pathogen-asso-
ciated molecular pattern; BMDM, bone marrow-derived macrophage.
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3% F4/80�, 21� 3mean fluorescence intensity, n� 4, p� 0.98,
both strains were homozygous for Lyzscre/cre).
Statistical Analyses—All data are from a minimum of three

biological replicates. Statistical analyses for ELISAs and qPCRs
were performed in GraphPad Prism 5 using unpaired t tests to
determine significance (p � 0.05). Analysis of C. elegans sur-
vival data also was performed using Graphpad Prism 5. We
previously presented siRNA data for Kif2a siRNA (12); in this
prior study, Kif2a siRNA’s effect on the LPS response did not
reach statistical significance, largely due to one outlier in the
data (mean� 78% of control, n� 8, p� 0.197). The data in this
study are statistically significant (mean 52%, n � 7, p � 0.003),
and both data setswhen considered together are also significant
(mean 66%, n � 15, p � 0.0028).

RESULTS

Identification of an Innate Immunity Protein Interaction
Network—Using comparative genomics RNAi screens in C.
elegans and mouse macrophages, we previously identified a
protein interaction network that includes several proteins that
modulate the innate immune response (supplemental Fig. 1)
(12). RNAi-mediated inhibition of several genes in this network
either decreased expression of putative antimicrobial genes in
C. elegans or production of LPS-induced inflammatory cyto-
kines in murine macrophages or both (12). This protein inter-
action network was initially identified based largely on pub-
lished interactions identified using yeast two-hybrid assays on
C. elegans proteins (43). This proteomic approach has been
extensively validated and has a roughly 80% confirmation rate
using secondary binding assays (43–46). To further define the
members of this protein interaction network, we searchedmul-
tiple protein-protein interaction databases to identify all pub-
lished protein-protein interactions in this network inC. elegans
(43, 47), Drosophila (48, 49), or humans (46, 50–54), focusing
on homologous proteins in each species (gene homologies in
supplemental Table 2). These database searches were used to
refine the network and were followed by a comprehensive lit-
erature review of each network protein in all three species. The
final version of the innate immunity protein interaction net-
work is depicted in Fig. 1; for simplicity, only proteins present in
mammals are depicted in Fig. 1, even though this network
depicts interactions identified in multiple species. The com-
plete list of protein-protein interactions in Fig. 1 are listed in
Table 1. All these interactions are bona fide protein-protein
interactions (not computational predictions), and many have
been identified multiple times in multiple species using several
different binding assays.
In addition to many novel candidate proteins, this network

contains several proteins in the canonical LPS response path-
way. The canonical LPS response pathway in this network
includes aMyD88 familymember, TRAF6, I�B�, and two I�B�
regulators, the E3 ubiquitin ligase SCF�-TrCP and the E2 ubiq-
uitin-conjugating enzyme UBE2d2 (55, 56). We previously
showed that RNAi-mediated inhibition of three genes in this
network (Siah1, Macf1, and Ube2d2) affected production of
putative C. elegans antimicrobial genes, and RNAi-mediated
inhibition of two network genes (Siah1a and Macf1) affected
LPS-induced cytokine production in mouse macrophages (12).

Although several genes in this network are in the canonical
pathway for the LPS response, most genes in this network have
not previously been implicated in innate immunity regulation
and have not been tested by us or others for an effect on the
response to LPS.
Most Genes in This NetworkModulate LPS-induced Cytokine

Production inMouseMacrophage Cell Lines—To test the func-
tion of the remaining genes in this network, we used RNAi to
inhibit 10 genes as follows: nine additional novel candidates as
well as the known TLR4 signaling gene MyD88 as a control.
Pools of four siRNAduplexes targeting each of these geneswere
transfected into the J774A.1 mouse macrophage cell line; the
cells were stimulated with LPS, and then cytokine production
wasmonitored by ELISA. As a positive control, we showed that
inhibition of the LPS receptor TLR4 strongly inhibited IL-6
production (Fig. 2A). Inhibition of seven of the 10 network
genes led to a statistically significant decrease in LPS-induced
IL-6 production (Fig. 2A) without affecting cell viability (Fig.
2B). qPCR analysis demonstrated that these siRNA treatments
were inhibiting expression of the corresponding endogenous
gene (Fig. 2C).
Sf3a1 and Golga4 Regulate LPS-induced Cytokine Secretion—

We performed several further RNAi experiments with the two
novel genes that exhibited the strongest phenotypes, Sf3a1 and
Golga4. First, we demonstrated that multiple individual siRNA
duplexes targeting each of these two genes induced similar phe-
notypes, a decrease in LPS-induced IL-6 production (Fig. 3).
Multiple individual duplexes exhibit the samephenotype, suggest-
ing that theeffectoncytokineproduction isdue to inhibitionof the
corresponding endogenous gene.We alsomonitored the produc-

FIGURE 1. An innate immunity protein interaction network. The protein
interaction map depicts human proteins with known homologous protein-
protein interactions in C. elegans, humans, or Drosophila (list of protein-pro-
tein interactions with references is given in Table 1 and a list of gene
homologs is provided in supplemental Table 2). Each line between proteins
indicates a single reported interaction; multiple lines indicate multiple reports
of that interaction. Solid black bar indicates a well established biochemical
interaction with multiple reports. Proteins with an RNAi-induced phenotype
in C. elegans (decreased antimicrobial production (12)) or mouse macro-
phages (decreased LPS-induced IL-6 production, see Fig. 2 and Ref. 12) are
color-coded as indicated. Proteins in the canonical TLR4 LPS response path-
way that are already known to regulate innate immunity are labeled with red
boxes around the protein name.
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tion of several other cytokines and chemokines (TNF�, IL-10,
and RANTES) and found that inhibition of Sf3a1 and Golga4
decreased their production as well (supplemental Fig. 2), indi-
cating that these two genes have amore general effect on innate
immunity.
As an additional test of these two genes, we used RNAi to

inhibit them in a second mouse macrophage cell line,
RAW264.7 cells. As a control for the RNAi, we found that
RNAi-mediated inhibition of genes known to be required for

LPS-induced IL-6 production (the LPS receptorTLR4, the TLR
signaling adaptor MyD88, and IL-6 itself) led to a strong inhi-
bition of IL-6 production, whereas RNAi-mediated inhibition

TABLE 1
Published protein-protein interactions in innate immunity protein
interaction network

Interaction/species Interactionsa Ref.

Siah1-MyD88
Human Y2H 106
Human Co-IP 106

Siah1-MyD88 family (tir-1)b
C. elegans Y2H 43
C. elegans Y2H 16

Siah1-Ube2d2
Human Y2H 107
Human Y2H 108
Drosophila Y2H 109, 110
Human E2 111
Human E2 112

Siah1-Kif2a
C. elegans Y2H 43

Kif2a-Irf2bp1
C. elegans Y2H 43

Kif2a-Kif21a
C. elegans Y2H 43

Golga4-MyD88 family (tir-1)
C. elegans Y2H 43

Golga4-Macf1
Human Y2H 102
Human Co-IP 102
Human Western overlay 102

Slc25a5-MyD88 family (tir-1)
C. elegans Y2H 43

Smyd3-MyD88 family (tir-1)
C. elegans Y2H 43

Tnpo1-MyD88 family (tir-1)
C. elegans Y2H 43

Tnpo1-Ube2d2
Drosophila Y2H 113

Ube2d2-Traf6
Human Y2H 108
Human In vitro ubiq 108

Slc25a5-I�B�
Human Y2H 114
Human TAP 115

SCF�-TrCP-Ube2d2
Drosophila Y2H 116
Drosophila Affin chrom 116
Human Co-IP 117
Human In vitro ubiq 117

Sf3a1-MyD88 family (tir-1)
C. elegans Y2H 43

I�B�-SCF�-TrCP
Many Many 117 and references

therein
a The abbreviations used are as follows: Co-IP � co-immunoprecipitation; Y2H �
yeast two-hybrid assay; Affin chrom � affinity chromatography; In vitro ubiq �
in vitro ubiquitination assay; TAP � tandem affinity purification, and E2 ubiq �
provides ubiquitin for E3 ubiquitin ligase in biochemical assay.

b tir-1 is the sole C. elegansMyd88 family member. Although tir-1 is most homol-
ogous to human Sarm, it functions most like MyD88 in that it is required for
resistance to Gram-positive, Gram-negative, and fungal pathogens and func-
tions upstream of the p38 MAPK pathway (15, 16, 118, 119).

FIGURE 2. Most genes in the innate immunity protein interaction network
affect LPS-induced IL-6 production in the J774A.1 mouse macrophage
cell line. A, pools of four siRNA duplexes per gene were transfected into the
mouse macrophage cell line J774A.1; cells were stimulated with 20 ng/ml LPS
for 6 h, and IL-6 production was monitored by ELISA on cell supernatants. IL-6
production was normalized relative to a control pool of siRNA duplexes (CT1,
Dharmacon nontargeting siRNA pool). CT2 is a second negative control (Dhar-
macon nontargeting siRNA 1). TLR4, the LPS receptor, is presented as a positive
control. Two genes in this network (Macf1 and Siah1a) were inhibited previously;
the data for these two genes from this prior publication (12) is presented at the
end of the panel. B depicts the effects on viability of the indicated siRNA treat-
ments normalized so that viability of control siRNA was equal to 1. C, depicts the
results of qPCR, which was used to monitor RNA knockdown of the indicated
genes. Asterisks indicate siRNA treatments that induced IL-6 levels (A) or gene
knockdown (C) that were significantly different from the controls (p � 0.05). No
viability measurements (B) were statistically significantly different from control.

FIGURE 3. SF3A1 and GOLGA4 regulate LPS-induced IL-6 release in the
J774A.1 mouse macrophage cell line. To confirm the results generated by
the pools of siRNA duplexes in Fig. 2 for the two genes that induced the
strongest phenotypes, each of four individual siRNA duplexes (labeled A–D)
were used to inhibit either Sf3a1 or Golga4. The figure depicts LPS-induced
IL-6 production following siRNA treatment (20 ng/ml LPS for 6 h). IL-6 is off
scale as indicated by the arrow above Golga4 siRNA (D) (733 � 57%). Asterisks
indicate siRNA treatments that induced IL-6 levels that were statistically dif-
ferent from the control (p � 0.05).
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of known negative regulators of TLR signaling (A20 and Atf3)
(57, 58) led to increased IL-6 release (Fig. 4A). Using these same
conditions, we found that inhibition of Sf3a1 and Golga4 in
RAW264.7 cells using a pool of siRNA duplexes targeting each
gene strongly inhibited LPS-induced IL-6 production (Fig. 4B)
and strongly decreased RNA levels for the corresponding
endogenous gene (Fig. 4C).We alsomonitored IL-6RNA levels.
Inhibition of Sf3a1 led to a strong decrease in IL-6 RNA (Fig.
4D), much as it did for secreted cytokine (Fig. 4B), indicating
that Sf3a1 was likely affecting signaling. In contrast, although
Golga4 inhibition strongly inhibited IL-6 protein secretion (Fig.
4B), IL-6 RNA was only moderately decreased when Golga4
was inhibited (Fig. 4D), suggesting that GOLGA4may be acting
differently than SF3A1.
Demonstration of the Importance of This Network in Vivo

Using AvailableMutations in C. elegans andMice—To validate
these in vitro RNAi results and prove that multiple proteins in
this network play an important role in regulating innate immu-
nity in vivo, we tested the potential immune function of several
of these genes in C. elegans or mice using available mutants. As
outlined below, experiments in both species suggest that many
genes in this network affect innate immunity and immunolog-
ical disease in vivo.
Monitoring the Effect of Available C. elegans Network Muta-

tions on Host Defense—Although no viable mutation was avail-
able in prp-21, the C. elegans ortholog of Sf3a1, a temperature-
sensitive allele of repo-1, the C. elegans Sf3a2 homolog, was
available. SF3A1 and SF3A2 (along with SF3A3) form the Sf3a
complex. Sf3a interacts with the U2 small nuclear ribonucleo-

protein, which in turn interacts with the pre-mRNA branch
point near the 3� splice site in pre-mRNA (59) and facilitates
mRNA splicing in conjunction with the rest of the spliceosome
(60–63). We first verified that inhibition of Sf3a2, like inhibi-
tion of Sf3a1, diminished LPS-induced IL-6 production in
mouse macrophages (Fig. 4B), that this inhibition decreased
Sf3a2RNA levels (Fig. 4C), and that viability was not affected by
Sf3a2 inhibition (data not shown). The C. elegans repo-1/Sf3a2
allele is a temperature-sensitive allele that may be neomorphic:
it is weakly semi-dominant at the restrictive temperature of
26 °C.3 We also obtained four additional available C. elegans
mutant strains corresponding to genes in the innate immunity
protein interaction network: klp-12(tm5176), set-18(gk334),
siah-1(tm1968), and tag-260(ok1339), orthologs of Kif21a,
Smyd3, Siah1, and Irf2bp1, respectively. The klp-12/Kif21a, set-
18/Smyd3, siah-1/Siah1, and tag-260/Irf2bp1 alleles are all
deletion alleles that should be nulls. All of these mutants other
than Kif21a correspond to genes that exhibited a phenotype in
the macrophage siRNA assay. These five mutant lines were
exposed to the nematode and human pathogen P. aeruginosa
strain PA14 (36, 64, 65), and survival wasmonitoredwhen com-
pared with the wild type strain N2 (37).
set-18/Smyd3 mutant nematodes survived a slightly shorter

length of time than wild type nematodes when exposed to P.
aeruginosa strain PA14 (Fig. 5A). set-18/Smyd3mutant animals
also lived slightly shorter lengths of time when grown in the
presence of the nonpathogenicE. coli strainOP50, the standard
laboratory C. elegans food source (Fig. 5B), raising the possibil-
ity that set-18/Smyd3 could be regulating either host defense or
general fitness. Live E. coli has been reported to be very slightly
pathogenic to C. elegans under some conditions (66, 67). We
therefore monitored the survival of C. elegans strains grown in
the presence of heat-killed E. coli, and we found that the life
span of set-18/Smyd3 mutant animals was indistinguishable
from that of the wild type strain under these conditions (Fig.
5C). Thus, the set-18/Smyd3 mutant animals exhibited a mod-
erate host defense defect in the presence of both P. aeruginosa
and live E. coli.
Nematodes harboring mutations in either klp-12/Kif21a or

tag-260/Irf2bp1 survived slightly longer in the presence of
pathogenic P. aeruginosa but not nonpathogenic E. coli (Fig. 5,
D–G), demonstrating that these strains were moderately resis-
tant to pathogens. To monitor the effect of the temperature-
sensitive repo-1/Sf3a2 mutation on host defense, nematodes
were allowed to develop at the permissive temperature (15 °C)
in the presence of E. coli and were shifted to the restrictive
temperature (26 °C) and plates containing P. aeruginosa as
young adults. repo-1/Sf3a2mutant animals also survived longer
in the presence of pathogenic bacteria (Fig. 5H); this resistance
to pathogen was all the more striking as the mutant nematodes
appeared visibly unhealthy and had a diminished life span in the
presence of nonpathogenic E. coli (Fig. 5I). The pathogen resis-
tance of repo-1mutant animals was likely not due to avoidance
of the pathogen; 65% of repo-1 mutant animals (n � 57)
remained within the pathogenic bacterial lawn compared with

3 M. R. Keikhaee and B. Bowerman, manuscript in preparation.

FIGURE 4. Confirmation that SF3A1 and GOLGA4 regulate LPS-induced
IL-6 production using a second mouse macrophage cell line. A and
B, indicated pools of siRNA duplexes were transfected into the RAW264.7
mouse macrophage cell line; cells were simulated with LPS (20 ng/ml for 6 h),
and IL-6 production in cell supernatants was monitored by ELISA. C depicts
the results of qPCR, which was used to monitor RNA knockdown of the indi-
cated genes in B. D, indicated pools of siRNA duplexes were transfected into
the RAW264.7 mouse macrophage cell line; cells were stimulated with LPS (20
ng/ml for 6 h), and IL-6 RNA production was monitored by qPCR. Asterisks
indicate siRNA treatments that induced IL-6 protein levels (B), gene knock-
down (C), or IL-6 RNA levels (D) that were statistically different from the con-
trols (p � 0.05).
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59% of wild type N2 animals (n � 69). Similarly, the pathogen
resistance of repo-1 mutant animals also was likely not due to
failure to ingest the pathogen as repo-1 mutant nematodes
exhibited normal pharyngeal pumping rates in the presence of
P. aeruginosa (202 � 10 pumps/min repo-1 and 204 � 10
pumps/min wild type N2, expressed as mean � S.E., n � 15).

Finally, siah-1/Siah1mutant animals did not display altered
sensitivity to P. aeruginosa exposure (Fig. 5J). Thus, four of the

five innate immunity network mutants tested in C. elegans dis-
played altered nematode host defense.
Macf1 Regulates Cytokine Production in Vivo in Mouse

Macrophages—RNAi-mediated inhibition of Macf1 in the
J774A.1 mouse macrophage cell line decreased LPS-induced
IL-6 production (Fig. 2A) (12). To further explore the role of
Macf1 in the regulation of the LPS response, we used a similar
approach to inhibit Macf1 in a second immortalized mouse

FIGURE 5. Mutation of innate immunity network genes in C. elegans alters nematode host defense. Depicted are survival curves for the indicated mutant
strains exposed to the pathogen P. aeruginosa PA14 (left panels), nonpathogenic E. coli OP50 (middle panels), or heat-killed E. coli OP50. N2 (wild type nema-
todes) is depicted in black; the indicated mutants are depicted in red. The tested alleles and further statistical data (medians, n, and p values) are listed in
supplemental Table 3.
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macrophage cell line, RAW264.7. Surprisingly, we observed
that inhibition of Macf1 in this second cell line induced the
opposite phenotype, an increase in cytokine production (Fig.
6A). To further explore the role of Macf1, we overexpressed
Macf1 in the RAW264.7 macrophage cell line and monitored
the expression of an NF�B-AP1-luciferase reporter (a 133-bp
derivative of the IL-8 promoter (40)) using SV40-rluc (Pro-
mega) as a normalization control, and we found that overex-
pression of Macf1 but not chloramphenicol acetyltransferase
(CAT) diminished the response to LPS (Fig. 6B), which con-
firmed the RNAi phenotype in the RAW264.7 macrophages.
These opposing results in different immortalized cell lines
underlined the importance of investigating the effect of these
genes in vivo.
To determine the function of Macf1 in vivo, we generated

BMDM-deficient in Macf1 expression. To do so, we crossed
conditional Macf1flox/flox (41) mice with Lyzs-cre mice (JAX)
(42), which drives deletion ofMacf1 in the myeloid lineage.We
generated BMDM fromMacf1flox/flox;Lyzs-cremice and control
sibling Macf1�/�;Lyzs-cre mice and found that Macf1 expres-
sion was decreased to 33.0 � 5.1% of wild type levels in the
BMDM from the floxed mice.
BMDM with decreased Macf1 expression exhibited in-

creased LPS-induced IL-6 production (Fig. 6C), confirming the
Macf1 RNAi data in the RAW264.7 cells. In addition to affect-
ing the response to the TLR4 agonist LPS, Macf1 also affected
the response to the TLR2/1 agonist PAM3CSK4 (68) as BMDM
with decreased Macf1 expression exhibited increased
PAM3CSK4-induced IL-6 production as well (Fig. 6D).

DISCUSSION

In this age of systems biology, with high throughput RNAi
screens, microarrays, proteomics, and other approaches, it is
becoming increasingly important to sift through large datasets
to define genes and pathways of interest (69). Many studies
have used microarrays or RNAi to identify candidate genes for
a phenotype of interest followed by some type of network or
interactome analysis to sort through the data. For example, Li et
al. (70) use a combination of protein interaction studies and
RNAi to identify a network that regulates type I interferon pro-
duction, and Amit et al. (71) use similar strategies to under-
stand the transcriptional network underlying mammalian
pathogen responses. Several investigators are also using screens
in simpler model systems such as C. elegans or Drosophila to

investigate innate immunity, and some of these studies report
validation of these model systems data in mammalian cells
using RNAi (see for example Refs. 22, 72).
We have performed candidate-based and genomic RNAi

screens to identify regulators of the innate immune response to
LPS (12) and have incorporated a comparative genomics
approach into these studies to facilitate the analysis and
strengthen our conclusions. Such cross-species studies offer
the opportunity to identify networks not easily identifiable in
individual species datasets (73). Additionally, the use of multi-
ple RNAi screens could overcome the reported high false-pos-
itive rate in mammalian RNAi screens due to off-target affects
(74). Finally, the availability of cheap, rapidly obtainable
mutants inmodel organisms likeC. elegans (75) allows for rapid
testing of in vitro results using in vivo disease models.
Exposure ofC. elegans to different pathogenic andnonpatho-

genic bacteria and fungi induces the expression of different sub-
sets of antimicrobial genes (15, 18, 23–27). This specificity indi-
cates that C. elegans can discriminate between different
pathogens, even between different Gram-negative bacteria,
suggesting that a response to a single PAMP such as LPS cannot
explain the complete spectrum of the innate immune response
in C. elegans. There is evidence for both PAMP and damage-
associated molecular pattern-mediated innate immune activa-
tion inC. elegans, although the relative contribution of each and
the specific details are still unclear. Evidence for the PAMP
model comes from Aballay et al. (76) who show that intact
Salmonella enterica LPS is required for a robust nematode
innate immune response and from Vigneshkumar et al. (77)
who show that P. aeruginosa LPS can alter C. elegans antimi-
crobial gene expression. Evidence for a damage-associated
molecular pattern response comes from two studies (78, 79)
that show that pathogen-mediated alterations in translation
can affect the nematode innate immune response. Thus, it is
still unclear what aspects of pathogen recognition are con-
served between mammals and nematodes, and thus it
remains to be determined whether the genes we identified
that function in innate immunity in both models exhibit
conservation of overall mechanism or if they function
differently.
Using a combination of comparative genomics RNAi screens

and protein interaction analysis, we have identified a small net-
work of proteins almost all of whom modulate the innate

FIGURE 6. MACF1 inhibits PAMP-induced cytokine production in RAW264.7 cells and in vivo. A, pool of four siRNA duplexes targeting either Macf1 or a
nontargeting control siRNA duplex pool were transfected into the mouse macrophage cell line RAW264.7; cells were stimulated with 20 ng/ml LPS for 6 h, and
IL-6 production was monitored by ELISA. B, RAW264.7 cells were transfected with plasmids overexpressing either Macf1 or CAT, an NF�B-AP1-luciferase
reporter, and the SV40-rluc control plasmid. After transfection, the cells were stimulated (or not) with LPS as indicated. Firefly luciferase activity was monitored
and normalized relative to the Renilla luciferase control. C and D, BMDMs from Macf1flox/flox;Lyzs-cre mice and control BMDM from Macf1�/�;Lyzs-cre mice were
exposed to either 2 ng/ml LPS or 20 ng/ml PAM3CSK4 for 6 h, and IL-6 production was monitored by ELISA. n � 9, p � 0.05 for both PAMPs. Asterisks indicate
data that was significantly different from the control (p � 0.05).
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immune response to LPS in mouse macrophage cell lines. The
utility of this network for the identification of important innate
immune regulatorswas evidenced by a follow up analysis on the
two novel genes whose inhibition generated the largest effects,
Sf3a1 and Golga4. Both SF3A1 and GOLGA4 are required for
robust LPS-induced IL-6 secretion, because RNAi-mediated
inhibition of these genes strongly diminished IL-6 release from
macrophages in two different mouse macrophage cell lines.
However, the two genes may affect different aspects of the
innate immune response.
Sf3a1 and its interacting protein Sf3a2 were required for pro-

duction of IL-6 protein and IL-6 RNA. Other reports show that
RNAi-mediated knockdownof Sf3a subunits can affect cell sur-
vival in HeLa cells (80); the difference in our data may be due to
incomplete (but still very strong) knockdown in macrophages
or other cell type-specific differences. The importance of the
Sf3a complex in innate immunity regulation is further evi-
denced by the strong effect of the temperature-sensitive Sf3a2
mutation onC. elegans resistance to pathogenic bacteria, which
is all themore striking given that thismutation has the opposite
effect on overall cell health. Because inhibition of two different
mRNA splicing regulators in this complex diminished the LPS
response, we infer that the Sf3a complex is regulating the alter-
native splicing of a critical innate immunity regulator. Many
TLR genes are reported to be alternatively spliced in
response to immune cell activation (81). For example, TNF�,
c-fos, TLR4, MyD88, and NF�B have been reported to be
differentially spliced in response to LPS or other stimulation
(82–86); these alternate splice forms can have very different
functions. The interaction of MyD88 family members with
Sf3a1 raises the possibility that MyD88 could alter Sf3a1
activity and thus mRNA splicing of an innate immunity reg-
ulator gene(s).
In contrast, although inhibition ofGolga4 strongly decreased

the amount of IL-6 protein secreted, we found thatGolga4 inhi-
bition had a more moderate effect on IL-6 RNA accumulation.
This is consistent with the reported requirement for GOLGA4
in TNF� and IL-10 secretion. GOLGA4 is required for TNF�
and IL-10 transport through post-Golgi vesicles (87, 88);
because IL-6 andTNF� traffic through a similar initial pathway
of secretion (89–91), it is likely that GOLGA4 affects the LPS-
induced secretion of both cytokines. Our IL-6 RNA results sug-
gest that GOLGA4 may also have a small effect on signaling as
well. The expression of many cytokine trafficking genes is
increased in response to LPS stimulation (91), and the reported
interaction of aMyD88 familymember withGOLGA4 could be
a direct protein-protein interaction that facilitates cytokine
secretion as well.
In addition to these two genes, we validated several other

network genes in vivo using available knock-out nematodes or
mouse macrophages. In general, mutants with innate immune
defects in C. elegans are susceptible to pathogens, although
there are conditions underwhich the nematode innate immune
response can have a negative impact on survival and thus
mutants could enhance pathogen resistance (92).
tag-260/Irf2bp1 mutant nematodes were moderately resist-

ant to pathogen. The fact that IRF2BP1 could affect innate
immunity is not surprising given the fact that IRF2BP1 is

reported to be a co-repressor for IRF2 (93), which can affect the
LPS response in macrophages (94–96). klp-12/Kif21a mutant
nematodes were also moderately resistant to pathogen. The
kinesin KIF21A is a plus-end-directed microtubule motor (97)
that has not been implicated in innate immunity previously.
set-18/Smyd3 mutant nematodes were slightly susceptible to
pathogenic bacteria but not heat-killed E. coli; SMYD3 is a his-
tone methyltransferase that affects transcription (98, 99) and
could therefore havemany conceivable effects on innate immu-
nity. Although the nematode siah-1/Siah1 mutation did not
affect survival of the presence of P. aeruginosa, we note that
there are many other pathogens that infect nematodes that we
have not tested.Moreover, overexpression of Siah1 inmamma-
lian cells has been reported to stimulate NF�B activity (100),
consistent with our macrophage RNAi data.
We also demonstrated that deletion of another network

gene,Macf1, frommousemacrophages led to increased PAMP-
induced IL-6 production. Unlike Sf3a1 and Golga4, which
exhibited similar phenotypes when inhibited in either of two
mouse macrophage cell lines,Macf1 exhibited different effects
in these lines, and the effect in RAW264.7 cells but not J774A.1
cells phenocopied the in vivo effect. We are uncertain of pre-
cisely why the two immortalized lines differ, but one possibility
is that because MACF1 affects subcellular trafficking (101–
105), perhaps it has both positive and negative effects on differ-
ent aspects of innate immunity, and differential knockdown
could cause different effects. Regardless, it does reinforce the
importance of in vivo follow-up studies to validate in vitroRNAi
data.
Roughly one-third of C. elegans genes that regulated antimi-

crobial production in our nematode RNAi screen affected pro-
duction of LPS-induced cytokine production in mouse macro-
phages (12). Moreover, 83% (10/12) of the genes in this protein
network regulated LPS-induced cytokine production, and 5 of 6
of these network genes affected innate immunity in vivo. In
contrast, inhibition of only 2 out of 100 other candidate genes
(identified using computational approaches examining PAMP-
induced gene expression data in the literature) led to an altered
LPS-induced cytokine response.4 Although our comparative
genomics and proteomics approach is identifying novel innate
immunity regulators at high efficiency, it remains to be deter-
mined whether the mechanisms by which these genes act are
conserved between species.
In summary, we have identified a network of orthologous

interacting proteins in C. elegans, Drosophila, and mammals,
demonstrated that most proteins in this network regulate the
response to the TLR4 agonist LPS in vitro, demonstrated that
the two genes in this network that exhibited the strongest
RNAi-induced phenotypes (Sf3a1 and Golga4) do so through
different mechanisms, and validated five of these candidates in
vivo using knock-out nematodes and mice. Thus, this novel
evolutionarily conserved protein interaction network will pro-
vide very fertile ground for future investigation. Future studies
will involve determining the mechanisms by which these genes
act and determining what role they play in different diseases
that are affected by innate immunity.

4 S. Alper, unpublished data.
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